II B.Tech - II Semester – Regular Examinations – MAY 2023

ADVANCED THERMODYNAMICS (HONORS in MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	CO	Max. Marks	
	UNIT-I					
1	a)	Explain mechanical, thermal and chemical	L2	CO1	7 M	
		irreversibilities.				
	b)	A house, initially at a temperature T_1 during	L3	CO1	7 M	
		a hot summer day, must be cooled to a				
		temperature T_2 , while the ambient				
		temperature is T_0 . Obtain an expression for				
		the minimum work required. If $T_0 = 310$ K,				
		$T_1 = 310$ K, $T_2 = 294$ K, $C_{v0} = 0.718$ kJ/				
		kg.K. Determine the minimum work				
		required to cool a house containing a living				
		area of 200 m ² with equivalent mass of				
		50 kg/m^2 of living area.				
	OR					
2	a)	What are different laws of	L2	CO1	7 M	
		thermodynamics? Explain them along with				
		the properties developed based on these				

		laws.			
	b)	Explain the concept of Irreversibility and	L2	CO1	7 M
		entropy of an Isolated system with an			
		example.			
		UNIT-II			
3	a)	What are the Maxwell relations and explain	L3	CO1	7 M
		the significance of each Maxwell relation?			
	b)	Explain about Mayer's relation and Specific	L3	CO2	7 M
		heat relations.			
OR					
4	a)	Explain about enthalpy correction charts.	L2	CO2	7 M
	b)	Derive Clausius Clapeyron equation.	L2	CO2	7 M
		UNIT-III			
5	A c	ertain mass of air is contained in a vessel of	L3	CO2	14 M
	0.14	42 m ³ capacity at pressure and temperature of			
	23.	1 bar and 18°C respectively. A valve is			
	ope	ned momentarily and the pressure falls			
	imr	nediately to 6.9 bar. Sometime later the			
	tem	perature is again 18°C and the pressure is			
	obs	erved to be 9.1 bar. Estimate the value of			
	spe	cific heat ratio.			
		OR			
6	a)	Derive the expression to evaluate entropy of	L2	CO2	7 M
		perfect gas mixtures.			
	b)	At steady state, 100m ³ /min. of dry air at	L3	CO2	7 M
		32 [°] C and 1bar is mixed adiabatically with a			

		form a mixed stream at 47 [°] C and 1bar. The			
		kinetic and potential energy effects are			
		negligible. Determine (i) mass flow rates of			
		dry air and Oxygen in kg/min. (ii) the mole			
		fraction of dry air and Oxygen in the			
		existing mixture, and (iii) time rate of			
		entropy production, in kJ/min.			
		UNIT-IV			
7	a)		L3	CO3	7 M
		of the diesel fuel C_{12} H ₂₆ with 100% excess			
		air and also with 100% theoretical air.			
	b)	Octane C_8H_{18} is burned with dry air at	L3	CO3	7 M
	,	P = 14.7 psia. i) Calculate stoichiometric			
		A: F ratio. If volumetric analyses of dry			
		products are CO_2 : 7%, O_2 : 10.90%,			
		N_2 : 82.10%, then determine ii) equivalence			
		ratio for actual combustion.			
		OR			
8	a)	Explain chemical equilibrium relations with	L2	CO3	7 M
		an example.			
	b)	Calculate the maximum power developed	L3	CO3	7 M
		and irreversibility of a chemical reaction			
		process of fuel C_8 H ₁₈ burnt with 200%			
		theoretical air. The products of combustion			
		leave at 1000 K and the ambient			
		temperature is 288 K.			
<u> </u>					

UNIT-V							
9	a)	Explain the factors effecting flame velocity	L2	CO3	7 M		
		and flame thickessness in combustion					
		process.					
	b)	Discuss about diffusion flame.	L2	CO3	7 M		
OR							
10	a)	How flammability effects the combustion	L2	CO3	7 M		
		process. Explain.					
	b)	Explain about flame stabilization.	L2	CO3	7 M		